Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
2.
Heliyon ; 10(8): e29695, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660259

RESUMO

Cotton bollworm (Helicoverpa armigera) is a highly polyphagous, widely prevalent, and persistent Old World insect pest that affects numerous important crops that are directly consumed by people, including tomato, cotton, pigeon pea, chickpea, rice, sorghum, and cowpea. Insects do not synthesize steroids but obtain them from their diet. Inhibition of dietary uptake of steroids by insects is a potentially effective insecticidal mechanism that should not be toxic to humans and other mammals, who synthesize their steroids. Ten curcumin derivatives were tested against H. armigera sterol carrier protein-2 (HaSCP-2) for their potential as insecticidal agents. Curcumin derivatives were initially docked at the binding site of HaSCP-2 to determine their binding affinities and plausible binding modes. The binding modes predominantly show hydrophobic interactions of derivatives with Phe53, Phe110, and Phe89 as core interacting residues in the active site. Validation of in silico results was carried out by performing a fluorescence binding and displacement assay to determine the binding affinities of curcumin derivatives. Among a collection of curcumin derivatives tested, Cur10 showed the lowest IC50 value of 9.64 µM, while Cur07 was 19.86 µM, and Cur06 was 20.79 µM. There was a significant negative correlation between the ability of the curcumin derivatives tested to displace the fluorescent probe from the sterol binding site of HaSCP-2 and to inhibit Sf9 insect cell growth in culture, which is consistent with the curcumin derivatives acting by the novel mechanism of blocking sterol uptake. Then molecular dynamics simulation studies validated the predicted binding modes and the interactions of curcumin derivatives with HaSCP-2 protein. In conclusion, these studies support the potential use of curcumin derivatives as insecticidal agents.

3.
J Fluoresc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602591

RESUMO

Fluorescence spectroscopy has been employed for the compositional analysis of flaxseed oil, detection of its adulteration and investigation of the thermal effects on its molecular composition. Excitation wavelengths from 320 to 420 nm have been used to explore the valued ingredients in flaxseed oil. The emission bands of flaxseed oil centred at 390, 414, 441, 475, 515 and 673/720 nm represent vitamin K, isomers of vitamin E, carotenoids and chlorophylls, which can be used as a marker for quality analysis. Due to its high quality, it is highly prone to adulteration and in this study, detection of its adulteration with canola oil is demonstrated by applying principal component analysis. Moreover, the effects of temperature on the molecular composition of cold pressed flaxseed oil has been explored by heating them at cooking temperatures of 100, 110, 120, 130, 140, 150, 160, 170 and 180 °C, each for 30 min. On heating, the deterioration of vitamin E, carotenoids and chlorophylls occurred with an increase in the oxidation products. However, it was found that up to 140 °C, flaxseed oil retains much of its natural composition whereas up to 180 oC, it loses much of its valuable ingredients along with increase of oxidized products.

4.
Ann Med Surg (Lond) ; 86(2): 923-925, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333255

RESUMO

Migraine is a complex neurological disorder characterized by recurring episodes of severe headaches. The pathophysiology of migraine involves abnormalities in neuronal networks, cortical spreading depression, and sensitization of trigeminovascular pathways. The global prevalence of migraine has increased substantially, warranting advancements in treatment strategies. A significant trigger in migraine pathophysiology is calcitonin gene-related peptide (CGRP). Several drugs, such as gepants and monoclonal antibodies (MABs) targeting CGRP or its receptor, have been developed to antagonize CGRP signaling. Zavegepant (Zavzpret), a novel CGRP receptor antagonist, has recently been approved by the FDA for the acute treatment of migraine. Clinical trials have demonstrated its efficacy in providing headache and symptom relief, with a statistically significant percentage of patients achieving freedom from headaches and most bothersome symptoms. Despite mild adverse effects, such as taste disorders and nausea, Zavzpret's overall safety profile remains acceptable.

5.
Ann Med Surg (Lond) ; 86(2): 1012-1020, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333256

RESUMO

Introduction: Telemedicine (TM) and teleconsultation services flourished during coronavirus disease 2019 (COVID-19) transmission to avoid COVID-19 infection and physical contact. Many physicians switched to the virtual treatment mode and nearly all types of health disciplines were covered. Through this systematic review, the authors tried to explore the strengths and weaknesses of TM, identify the barriers to adopting TM by population, and explain the limitations of this healthcare delivery model. Methods and results: In this systematic review, 28 studies were included (>53% high-quality studies) as eligible, where nearly 75% (n=21) of the studies were from India, and the remaining 25% (n=7) were from Pakistan, Bangladesh, Sri Lanka, and Nepal. Advice related to cancer, autoimmune diseases, and neurological diseases were the most common among the health disciplines in which TM was used. A peak in teleconsultation was observed during the high transmission phase of COVID-19, although major queries were associated with existing health complications and comorbidities. Conclusion: Other than a few concerns regarding connectivity, privacy, and diagnosis, TM was in fact affordable, timesaving, feasible, and accurate, which ensured a highly satisfying experience among the participants (>80%).

7.
Photobiomodul Photomed Laser Surg ; 42(2): 182-185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301213

RESUMO

Objective: To investigate the efficacy of Photobiomodulation therapy (PBMT) for the treatment of solitary rectal ulcer syndrome (SRUS). Background: SRUS is a benign disease, diagnosed by symptoms, clinical, and histological findings. PBMT has been reported for the treatment of various inflammation-based diseases including aphthous ulcer, but still no such study on the treatment of SRUS is published. Materials and methods: A 29-year Asian women, diagnosed for SRUS of 0.57 cm diameter, was treated by a laser at 635 nm through seven sessions. Laser fluence of 85 J/cm2 was delivered to ulcer lesion during each session for 10 min. Clinical results were valued by physician with sigmoid probe throughout PBMT sessions and no medicines were prescribed to the patient. Results: After seven sessions, the lesion was completely healed with 100% clinical response. In follow-up, patient did not respond to any additional/recurring abnormality, and no side effects were observed. Conclusions: In conclusion, PBMT by using laser at 635 nm is an effective treatment for SRUS without any side effects and patient remained comfortable throughout treatment sessions. Patient registration No. H-744/23.


Assuntos
Terapia com Luz de Baixa Intensidade , Doenças Retais , Feminino , Humanos , Doenças Retais/terapia , Doenças Retais/diagnóstico , Doenças Retais/patologia , Síndrome , Resultado do Tratamento , Úlcera/radioterapia , Úlcera/diagnóstico , Adulto
8.
Environ Sci Pollut Res Int ; 31(7): 10594-10608, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198090

RESUMO

Cadmium significantly impacts plant growth and productivity by disrupting physiological, biochemical, and oxidative defenses, leading to severe damage. The application of Zn-Lys improves plant growth while reducing the stress caused by heavy metals on plants. By focusing on cadmium stress and potential of Zn-Lys on pea, we conducted a pot-based study, organized under completely randomized block design CRD-factorial at the Botanical Garden of Government College University, Faisalabad. Both pea cultivars were grown in several concentrations of cadmium @ 0, 50 and 100 µM, and Zn-Lys were exogenously applied @ 0 mg/L and 10 mg/L with three replicates for each treatment. Cd-toxicity potentially reduces plant growth, chlorophyll contents, osmoprotectants, and anthocyanin content; however, an increase in MDA, H2O2 initiation, enzymatic antioxidant activities as well as phenolic, flavonoid, proline was observed. Remarkably, exogenously applied Zn-Lys significantly enhanced the plant growth, biomass, photosynthetic attributes, osmoprotectants, and anthocyanin contents, while further increase in enzymatic antioxidant activities, total phenolic, flavonoid, and proline contents were noticed. However, application of Zn-Lys instigated a remarkable decrease in levels of MDA and H2O2. It can be suggested with recommendation to check the potential of Zn-Lys on plants under cadmium-based toxic soil.


Assuntos
Antioxidantes , Poluentes do Solo , Humanos , Cádmio , Pisum sativum , Peróxido de Hidrogênio , Antocianinas , Zinco , Prolina , Suplementos Nutricionais , Poluentes do Solo/análise
9.
Environ Sci Pollut Res Int ; 31(6): 9844-9856, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200196

RESUMO

Wheat (Triticum aestivum L.) is among the plants that are at risk from cadmium (Cd), a hazardous heavy metal that can be fatal due to its rapid absorption and high mobility. Being taken up from the soil and moving to the shoots and roots of edible plants, it enters the food chain and poses a health concern to people worldwide. A strategically important cereal crop, wheat has a demonstrated role in human health systems, particularly in poor nations. In this study, we describe the effects of nitric oxide (NO) on the growth, nutrition, and physiological functions of commercially cultivated wheat cvs. Galaxy 2013 and Akbar 2019 under Cd stress. Four-week-old plants were subjected to Cd (0.5 mM) stress, and after 2 weeks of Cd toxicity, foliar application of nitric oxide (100 and 150 µM) was carried out. As evident from excessive antioxidant production, Cd toxicity increased reactive oxygen species (ROS) level like H2O2 and significantly (p ≤ 0.001) decreased nutrient acquisition, growth, and yield attributes of plants under experiment. The severity of the effect varied between cultivars under investigation. A minimum accumulation of MDA (44%) and H2O2 (55%) was found in the cv. Akbar 2019 under Cd stress, whilst cv. Galaxy 2013 showed the highest accumulation of the oxidative stress indicators malondialdehyde content (MDA) (48%) and H2O2 (60%). Reduced and oxidized glutathione contents were also increased under Cd-induced toxicity. The application of NO resulted in a significant improvement of 22, 25, 25, and 30% in shoot fresh weight, root fresh weight, shoot dry weight, and root dry weight, respectively. Additionally, there was an increased uptake of Ca+2 (16%), K+1 (5%), chlorophyll a (46%), b (32%), a/b ratio (41%), and carotenoid (28%). When compared with Cd-stressed plants, yield parameters like 100 grain weight, number of tillers plant-1, and grain yield plant-1 improved by 14, 17, and 33%, respectively, under NO application. We concluded from the results of this study that NO treatments increased plant development by lowering oxidative stress and limiting Cd uptake. It is inferred from the results of this study that wheat production with reduced heavy metal uptake may be facilitated using NO due to its cytoprotective properties and its interaction with ROS.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cádmio/análise , Antioxidantes/farmacologia , Triticum , Óxido Nítrico/farmacologia , Clorofila A , Espécies Reativas de Oxigênio/farmacologia , Peróxido de Hidrogênio/farmacologia , Metais Pesados/farmacologia , Solo , Minerais , Grão Comestível/química , Poluentes do Solo/análise
10.
Diagn Microbiol Infect Dis ; 108(1): 116129, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952308

RESUMO

This study aim to investigate the diagnostic potential of Raman spectroscopy in comparison with rapid urease test and histopathology in diagnosis of H. pylori infection. A comparative study was conducted at Pathology Laboratory and a total of 94 samples were collected from patients based on Rome IV criteria. Sensitivity, specificity and accuracy of histopathology, rapid urease test and for Raman spectroscopy were investigated. Rapid urease test showed 23 false negative results of H. pylori as compared to Raman spectroscopy and histopathology. We concluded that Raman spectroscopy showed sensitivity (94.5%), accuracy (94.0%) and specificity of (87.5%) in the diagnosis of H. pylori infection. However rapid urease test showed specificity of 92.5% while low sensitivity 75%, and 78% accuracy as compared to Raman spectroscopy and histopathology . This study illustrates the applicability of Raman spectroscopy as a potent innovative detection tool for the molecular detection of H. pylori infection in gastritis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Urease , Infecções por Helicobacter/diagnóstico , Análise Espectral Raman , Sensibilidade e Especificidade , Biópsia
11.
BMC Plant Biol ; 23(1): 648, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38102555

RESUMO

In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.


Assuntos
Brassica napus , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Brassica napus/metabolismo , Lisina/metabolismo , Ferro/metabolismo , Peróxido de Hidrogênio/metabolismo , Ecossistema , Antioxidantes/metabolismo , Estresse Oxidativo , Solo/química , Açúcares/metabolismo , Poluentes do Solo/metabolismo
12.
Cureus ; 15(9): e45958, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37900386

RESUMO

This narrative review investigates the severe health issue of arrhythmias, which affects millions of people worldwide. A multifaceted strategy incorporating medicine, catheter ablation, and advanced device interventions is necessary to manage these disorders effectively. Medication is the cornerstone, and as antiarrhythmic medications develop, their efficacy and side effects are reduced. Success depends on having individualized treatment strategies that consider patient profiles and arrhythmia type. Catheter ablation, a minimally invasive surgery that targets and removes faulty heart electrical circuits, has become a potent therapy when drugs are ineffective. Technological developments, including high-resolution mapping systems and customized catheters, improve precision. Pacemakers and implantable cardioverter-defibrillators (ICDs) are two examples of implantable cardiac devices essential to managing all types of arrhythmias. Pacemakers provide a regular heartbeat when the body's natural pacing mechanism fails. At the same time, ICDs, with cutting-edge algorithms, can identify and stop life-threatening arrhythmias and offer high-risk patients vital protection. As device technology advances, smaller, more durable devices become available, improving patient comfort and lowering the need for replacements. The seamless fusion of these three strategies is where holistic arrhythmia management shines. Even for difficult instances, customized combination therapy combining medicine, ablation, and device interventions offers complete solutions. Healthcare providers must collaborate for this integrated strategy to deliver personalized, efficient, and holistic care. In conclusion, the management of arrhythmias has developed into a dynamic, synergistic discipline where drugs, catheter ablation, and devices all work in concert to deliver comprehensive care. For those with arrhythmias, a patient-centered strategy that considers their particular patient features and best integrates different modalities can significantly enhance their quality of life. The effectiveness and accessibility of holistic arrhythmia management could be further improved because of ongoing developments in these fields, which is encouraging for patients and medical professionals.

13.
Nat Prod Res ; : 1-6, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882376

RESUMO

Iphiona grantioides (Boiss) Anderb. is a medicinal plant featuring several traditional uses. Nevertheless, this plant has not been widely investigated by modern medicinal chemistry yet, as also the properties of its extracts.In this study, we report the extraction of the essential oil by hydrodistillation from the leaves of I. grantioides. This was characterised by GC-MS analysis and ten chemical constituents were identified.Our findings demonstrate that the essential oil is effective in inhibiting the growth of bacterial strains, and of Klebsiela pneumonia and Staphylococcus aureus in particular. Additionally, its antioxidant properties were evaluated, and it showed radical scavenging activity in vitro.

14.
Food Sci Nutr ; 11(9): 5004-5027, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37701195

RESUMO

Calcium is imperative in maintaining a quality life, particularly during later ages. Its deficiency results in a wide range of metabolic disorders such as dental changes, cataracts, alterations in brain function, and osteoporosis. These deficiencies are more pronounced in females due to increased calcium turnover throughout their life cycle, especially during pregnancy and lactation. Vitamin D perform a central role in the metabolism of calcium. Recent scientific interventions have linked calcium with an array of metabolic disorders in females including hypertension, obesity, premenstrual dysphoric disorder, polycystic ovary syndrome (PCOS), multiple sclerosis, and breast cancer. This review encompasses these female metabolic disorders with special reference to calcium and vitamin D deficiency. This review article aims to present and elaborate on available data regarding the worldwide occurrence of insufficient calcium consumption in females and allied health risks, to provide a basis for formulating strategies and population-level scientific studies to adequately boost calcium intake and position where required.

15.
BMC Plant Biol ; 23(1): 397, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37596537

RESUMO

Agricultural production is severely limited by an iron deficiency. Alkaline soils increase iron deficiency in rice crops, consequently leading to nutrient deficiencies in humans. Adding iron to rice enhances both its elemental composition and the nutritional value it offers humans through the food chain. The purpose of the current pot experiment was to investigate the impact of Fe treatment in alkaline (pH 7.5) and acidic (pH 5.5) soils to introduce iron-rich rice. Iron was applied to the plants in the soil in the form of an aqueous solution of FeSO4 with five different concentrations (100, 200, 300, 400, and 500 mM). The results obtained from the current study demonstrated a significant increase in Fe content in Oryza sativa with the application of iron in both alkaline and acidic pH soils. Specifically, Basmati-515, one of the rice cultivars tested, exhibited a notable 13% increase in iron total accumulation per plant and an 11% increase in root-to-shoot ratio in acidic soil. In contrast to Basmati-198, which demonstrated maximum response in alkaline soil, Basmati-515 exhibited notable increases in all parameters, including a 31% increase in dry weight, 16% increase in total chlorophyll content, an 11% increase in CAT (catalase) activity, 7% increase in APX (ascorbate peroxidase) activity, 26% increase in POD (peroxidase) activity, and a remarkable 92% increase in SOD (superoxide dismutase) in acidic soil. In alkaline soil, Basmati-198 exhibited respective decreases of 40% and 39% in MDA and H2O2 content, whereas Basmati-515 demonstrated a more significant decrease of 50% and 67% in MDA and H2O2 in acidic soil. These results emphasize the potential for targeted soil management strategies to improve iron nutrition and address iron deficiency in agricultural systems. By considering soil conditions, it is possible to enhance iron content and promote its availability in alkaline and acidic soils, ultimately contributing to improved crop nutrition and human health.


Assuntos
Deficiências de Ferro , Oryza , Humanos , Solo , Peróxido de Hidrogênio , Ferro
16.
Int J Biol Macromol ; 251: 126409, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598820

RESUMO

This study investigated the ability of natural nanotubular clay mineral (Halloysite) and cellulose ether based biocomposite matrix as a controlled release agent for Verapamil HCl (BCS Class-I). Drug-loaded halloysite was prepared and tablet formulations were designed by varying amount of hydroxy propyl methyl cellulose (HPMC K4M). Physical characterization was carried out using SEM, FTIR, and DSC. Tabletability profiles were evaluated using USP1062 guidelines. Drug release kinetics were studied, and physiologically based pharmacokinetic (PBPK) modeling was performed. Compressed tablets possess satisfactory yield pressure of 625 MPa with adequate hardness and disintegration within 30 min. The initial release of the drug was due to surface drug on tablets, while the prolonged release at later time points (around 80 % drug release at 12 h) were due to halloysite loading. The FTIR spectra exhibited electrostatic attraction between the positively charged drug and the negatively charged Si-O-Si functional group of halloysite, while the thermogram showed Verapamil HCl melting point at ~146 °C with enthalpy change of -126.82 J/g. PBPK modeling exhibited PK parameters of optimized matrix formulation (VER-HNT3%) comparable to in vivo data. The study effectively demonstrated the potential of prepared biocomposite matrix as a commercially viable oral release modifying agent for highly soluble drugs.

17.
J Fluoresc ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37644375

RESUMO

Sensors play a critical role in the detection and monitoring of various substances present in our environment, providing us with valuable information about the world around us. Within the field of sensor development, one area that holds particular importance is the detection of small molecules. Small molecules encompass a wide range of organic or inorganic compounds with low molecular weight, typically below 900 Daltons including gases, volatile organic compounds, solvents, pesticides, drugs, biomarkers, toxins, and pollutants. The accurate and efficient detection of these small molecules has attracted significant interest from the scientific community due to its relevance in diverse fields such as environmental pollutants monitoring, medical diagnostics, industrial optimization, healthcare remedies, food safety, ecosystems, and aquatic and terrestrial life preservation. To meet the demand for precise and efficient monitoring of small molecules, this summary aims to provide an overview of recent advancements in sensing and quantification strategies for various organic small molecules including Hydrazine, Glucose, Morpholine, Ethanol amine, Nitrosamine, Oxygen, Nitro-aromatics, Phospholipids, Carbohydrates, Antibiotics, Pesticides, Drugs, Adenosine Triphosphate, Aromatic Amine, Glutathione, Hydrogen Peroxide, Acetone, Methyl Parathion, and Thiophenol. The focus is on understanding the receptor sensing mechanism, along with the electrical, optical, and electrochemical response. Additionally, the variations in UV-visible spectral properties of the ligands upon treatment with the receptor, fluorescence and absorption titration analysis for limit of detection (LOD) determination, and bioimaging analysis are discussed wherever applicable. It is anticipated that the information gathered from this literature survey will be helpful for the perusal of innovation regarding sensing strategies.

18.
Chembiochem ; 24(22): e202300346, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37642535

RESUMO

Human neutrophil elastase (HNE) is an enzyme that plays a key role in the body's inflammatory response. It has been linked to several diseases such as chronic obstructive pulmonary disease (COPD), emphysema, and cystic fibrosis. As potential treatments for these diseases, HNE inhibitors are of great interest. Metabolites derived from plants, particularly terpenoids such as ß-caryophyllene found in black pepper and other plants, and geraniol present in several essential oils, are recognized as significant sources of inhibitors for HNE. Because of their ability to inhibit HNE, terpenoids are considered promising candidates for developing novel therapies to treat inflammatory conditions such as COPD and emphysema. Furthermore, nature can serve as an excellent designer, and it may offer a safer drug candidate for inhibiting HNE production and activity in the future. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were searched to get relevant and up-to-date literature on terpenoids as human neutrophil elastase inhibitors. This review focuses on the isolation, chemical diversity, and inhibition of human neutrophil elastase (HNE) of various terpenoids reported from natural sources up to 2022. A total of 251 compounds from various terpenoids classes have been reported. Further, it also provides a summary of HNE inhibitors and includes a thorough discussion on the structure-activity relationship.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Humanos , Elastase de Leucócito/metabolismo , Elastase de Leucócito/uso terapêutico , Terpenos/farmacologia , Terpenos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
19.
J Fluoresc ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505365

RESUMO

Millions of deaths occur each year due to the late diagnosis of abnormal cellular growth within the body. However, the devastating impact of this can be significantly reduced if cancer metastasis is detected early through the use of enzymatic biomarkers. Among several biomarkers, γ-glutamyltranspeptidase (GGT) stands out as a member of the aminopeptidase family. It is primarily found on the surface of cancer cells such as glioma, ovarian, lung, and prostate cancer, without being overexpressed in normal cells or tissues. Recent years have witnessed significant progress in the field of cancer monitoring and imaging. Fluorescence sensing techniques have been employed, utilizing organic small molecular probes with enzyme-specific recognition sites. These probes emit a fluorescent signal upon interacting with GGT, enabling the imaging, identification, and differentiation of normal and cancerous cells, tissues, and organs. This review article presents a concise overview of recent progress in fluorescent probes developed for the selective detection of GGT, focusing on their applications in cancer imaging. It highlights the observed alterations in the fluorescence and absorption spectra of the probes before and after interaction with GGT. Additionally, the study investigates the changes in the probe molecule's structure following enzyme treatment, evaluates the sensor's detection limit, and consolidated imaging studies conducted using confocal fluorescence analysis. This comprehensive survey is expected to contribute to the advancement of sensing techniques for biomarker detection and cancer imaging, providing valuable insights for refining methodologies and inspiring future developments in this field.

20.
Nanomaterials (Basel) ; 13(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513090

RESUMO

In this study, bimetallic nanoparticles (NPs) of silver (Ag) and zinc oxide (ZnO) were synthesized using Leptadenia pyrotechnica leaf extract for the first time. Monometallic NPs were also obtained for comparison. The characterization of the prepared NPs was carried out using various techniques, including UV-Visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The latter confirmed the crystalline nature and diameter of the monometallic and bimetallic NPs of Ag and ZnO. The SEM images of the prepared NPs revealed their different shapes. The biological activities of the NPs were evaluated concerning their antibacterial, antioxidant, and cytotoxic properties. The antibacterial activities were measured using the time-killing method. The results demonstrated that both the monometallic and bimetallic NPs inhibited the growth of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The antioxidant activities of the NPs were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and their cytotoxicity was checked using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results indicated that the controlled quantity of the monometallic and bimetallic NPs did not affect the viability of the cells. However, the decreased cell (L-929) viability suggested that the NPs could have anticancer properties. Furthermore, the photocatalytic degradation of methyl violet and 4-nitrophenol was investigated using the prepared Ag/ZnO NPs, examining the factors affecting the degradation process and conducting a kinetic and thermodynamic study. The prepared Ag/ZnO NPs demonstrated good photocatalytic degradation (88.9%) of the methyl violet (rate constant of 0.0183 min-1) in comparison to 4-nitrophenol (NPh), with a degradation rate of 81.37% and 0.0172 min-1, respectively. Overall, the bimetallic NPs showed superior antibacterial, antioxidant, cytotoxic, and photocatalytic properties compared to the monometallic NPs of Ag and ZnO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA